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1. Set Proof Example

The following properties are sometimes useful in proofs:

• A = A ∪A = A ∩A
• ∅ ∩A = ∅
• ∅ ∪A = A
• A ⊂ B ⇔ A ∩B = A
• A ⊂ B ⇔ A ∪B = B

As an example, we prove one of these properties.

Proposition 1. Let A and B be a sets. Then A ⊂ B ⇔ A ∩B = A.

Proof. To prove an if and only if statement, we prove implication in both direc-
tions.

(⇒) Assume that A ⊂ B. We wish to show that A ∩ B = A. To show that
two sets are equal, we show that each is contained in the other.

(⊂) To show that A ∩B ⊂ A, it suffices to show that every element of A ∩B
is in A. Thus we select an arbitrary element c ∈ A∩B and show that it is in A.
Now by definition of intersection, c ∈ A ∩B means that c ∈ A and c ∈ B. Thus
c ∈ A. Since c was arbitrary, every element of A ∩ B is contained in A. Thus
A ∩B ⊂ A.

(⊃) Let a ∈ A. We wish to show that a ∈ A ∩ B. Since A ⊂ B, then every
element of A is an element of B. Thus a ∈ B. So a ∈ A and a ∈ B. By definition
of intersection, a ∈ A ∩B. Thus A ⊂ A ∩B.

Since A ∩B ⊂ A and A ⊂ A ∩B, we have A ∩B = A.
(⇐) Assume that A ∩ B = A. We wish to show that A ⊂ B. Let a ∈ A. It

suffices to show that a ∈ B. Since A ∩B = A, then a ∈ A ∩B. Thus a ∈ A and
a ∈ B. In particular, a ∈ B. �

Now let us prove the analogous statement in compressed form.

Proposition 2. Let A and B be a sets. Then A ⊂ B ⇔ A ∪B = B.

Proof.
(⇒) Assume that A ⊂ B. Clearly B ⊂ A ∪ B, so we show that A ∪ B ⊂ B.

Let c ∈ A ∪ B. Then c ∈ A or c ∈ B. If c ∈ B we are done, so assume that
c ∈ A. Since A ⊂ B, then c ∈ B by definition of subset. Thus A ∪B ⊂ B.

(⇐) Assume that A∪B = B and let a ∈ A. Thus a ∈ A∪B, so a ∈ B. Thus
A ⊂ B. �
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2. Natural Numbers

Define the natural numbers.
• 0 = ∅;
• 1 = {∅};
• 2 = {∅, {∅}};
• 3 = {∅, {∅}, {∅, {∅}}};

and so forth. We could have written this as
• 0 = ∅;
• 1 = {0};
• 2 = {0, 1};
• 3 = {0, 1, 2};

and so forth. A given natural number is the set containing all of the previous
natural numbers. Restate as follows.

We define 0 to be the empty set. If x is a set, the successor of x is denoted
x+ and is defined as

x+ = x ∪ {x}.
The natural numbers are the set N defined by following properties:

(1) 0 ∈ N;
(2) if n ∈ N, then n+ ∈ N;
(3) if S ⊂ N, 0 ∈ S, and n ∈ S ⇒ n+ ∈ S, then S = N.

For m,n ∈ N, we say the m is less than or equal to n if m ⊂ n:

m ≤ n ⇔ m ⊂ n.
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3. Induction

Note that the third property of natural numbers asserts that only successors
of 0 are in N; that is, this property asserts that N is a minimal set of successors
of 0, and that N is the unique set satisfying (1) through (3). This property is
known as the Principal of Mathematical Induction.

Suppose that for every natural number n, we have a proposition p(n) which
is either true or false. Let

S = {n ∈ N | p(n) is true}.
Now if p(0) is true, and if the truth of p(n) implies the truth of p(n+), then the
set S contains 0 and it contains the successor of every element in it. Thus, in
this case, S = N, which means that p(n) is true for all n ∈ N. We state this as

Theorem 1. Induction Theorem
Let p(n) be a proposition for each n ∈ N. If

(1) p(0) is true;
(2) If p(n) is true, then p(n+) is true;

then p(n) is true for all n ∈ N.

Example 1. Show that
∑n

i=1 = (n−1)n
2 for all n ∈ N.

Example 2. Show that 7 | (11n − 4n) for all n ∈ N.

Proof. For n = 1, we have 7 = 11− 4, so clearly 7 | 111 − 41. Thus assume that
7 | 11n−1 − 4n−1, so there exists x ∈ Z such that 7x = (11n−1 − 4n−1). Now

11n − 4n = 11n − 11 · 4n−1 + 11 · 4n−1 − 4 · 4n−1

= (11n−1 − 4n−1)11 + (11− 4)4n−1

= 7x · 11 + 7 · 4n−1

= 7(11x + 4n−1.

Thus 7 | (11n − 4n). �

Now the induction theorem can be made stronger by weakening the hypoth-
esis. The resulting theorem gives a proof technique which is known as strong
induction.

Theorem 2. Strong Induction Theorem
Let p(n) be a proposition for each n ∈ N. If

(1) p(0) is true;
(2) If p(m) is true for all m ≤ n, then p(n + 1) is true;

then p(n) is true for all n ∈ N.

Proof. Let t(n) be the statement that “p(m) is true for all m ≤ n”.
Our first assumption is that p(0) is true, and since the only natural number

less than or equal to 0 is zero (because the only subset of the empty set is itself),
this means that t(0) is true.

Our second assumption is that if t(n) is true, then p(n + 1) is true. Thus
assume that t(n) is true so that p(n + 1) is also true. Then p(i) is true for all
i ≤ n + 1. Thus t(n + 1) is true.

By our original Induction Theorem, we conclude that t(n) is true for all n ∈ N.
This implies that p(n) is true for all n ∈ N. �
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4. Recursion

We now state the Recursion Theorem, which will allows us to define addition
and multiplication of natural numbers.

Theorem 3. Recursion Theorem
Let X be a set, f : X → X, and a ∈ X. Then there exists a unique function
φ : N → X such that φ(0) = a and φ(n+) = f(φ(n)) for all n ∈ N.

Reason. May be proved by induction. �

Let f : N → N be given by f(n) = n+. Let σm : N → N be the unique
function, whose existence is guaranteed by the Recursion Theorem, defined by
σm(0) = m and σm(n+) = f(σm(n)) = (σm(n))+. Then σm(n) is defined to be
the sum of m and n:

m + n = σm(n).
Let f : N → N be given by f = σm. Let µm : N → N be the unique function,

whose existence is guaranteed by the Recursion Theorem, defined by µm(0) = 0
and µm(n+) = f(µm(n)) = σm(µm(n)) = m + µm(n). Then µm(n) is defined to
be the product of m and n:

mn = µm(n).
The following properties of natural numbers can be proved using the above

definitions:
• m + n = n + m (commutativity of addition);
• (m + n) + o = m + (n + o) (associativity of addition);
• mn = nm (commutativity of multiplication);
• (mn)o = m(no) (associativity of multiplication);
• m(n + o) = mn + mo (distributivity of multiplication over addition);
• m + 0 = m (0 is an additive identity);
• 1m = m (1 is a multiplicative identity);
• 0m = 0.

We state two additional properties, which we will use to show that multipli-
cation of integers is well-defined.

Proposition 3. Cancellation Law of Addition
Let a, b, c ∈ N and suppose that a + c = b + c. Then a = b.

Proposition 4. Cancellation Law of Multiplication
Let a, b, c ∈ N and suppose that ac = bc. Then a = b.
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5. Integers

Develop the integers from the natural numbers as follows.
Let A = N × N. We wish to think of the elements (a, b) of A as differences

a− b.
Define a relation ∼ on A by

(a, b) ∼ (c, d) ⇔ a + d = b + c.

Prove that this is an equivalence relation. Let [a, b] denote the equivalence class
of (a, b).

Set Z = {[a, b] | a, b ∈ N}.
Define addition and multiplication on Z as follows:
• [a, b] + [c, d] = [a + c, b + d];
• [a, b] · [c, d] = [ac + bd, ad + bc].

Prove that these binary operations are well-defined and satisfy the desired prop-
erties of the integers. The additive identity is [0, 0] and the additive inverse of
[a, b] is [b, a]. The multiplicative identity is [1, 0].

Define a relation ≤ on Z by

[a, b] ≤ [c, d] ⇔ a + d ≤ b + c.

Prove that this is a linear order relation on Z, and that it relates to addition and
multiplication in the desired way.
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6. Rationals

Develop the rationals from the integers as follows.
Let A = Z×Zr{0}. We wish to think of the elements (a, b) of A as fractions

a
b .

Define a relation ∼ on A by

(a, b) ∼ (c, d) ⇔ ad = bc.

Prove that this is an equivalence relation. Let [a, b] denote the equivalence class
of (a, b).

Set Q = {[a, b] | a, b ∈ Z with b 6= 0}.
Define addition and multiplication on Q as follows:
• [a, b] + [c, d] = [ad + bc, bd];
• [a, b] · [c, d] = [ac, bd].

Prove that these binary operations are well-defined and satisfy the desired prop-
erties of the integers. The additive identity is [0, 1] and the additive inverse of
[a, b] is [−a, b]. The multiplicative identity/is [1, 1] and the multiplicative inverse
of [a, b] is [b, a]. Denote [0, 1] by 0 and [1, 1] by 1. For x = [a, b], denote [−a, b]
by −x and [b, a] by x−1.

Define a relation ≤ on Q by

[a, b] ≤ [c, d] ⇔ (ad− bc)bd ≤ 0.

Prove that this is a linear order relation on Q, and that it relates to addition
and multiplication in the desired way.

The set Q satisfies the following properties:
(F1) (x + y) + z = x + (y + z);
(F2) x + 0 = x;
(F3) x + (−x) = 0;
(F4) xy = yx;
(F5) (xy)z = x(yz);
(F6) x · 1 = x;
(F7) x · x−1 = 1;
(F8) xy = yx;
(F9) x(y + z) = xy + xz;
(O1) x ≤ x;
(O2) x ≤ y and y ≤ x implies x = y;
(O3) x ≤ y and y ≤ z implies x ≤ z;
(O4) x ≤ y or y ≤ x.

Properties (F1) through (F2) say that Q is a field, and properties (O1) through
(O4) say that Q is a linearly ordered set.
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