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1. SET PROOF EXAMPLE

The following properties are sometimes useful in proofs:

A=AUA=ANA
GNA=0
JUA=A

ACB& ANnB=A
ACB& AUB=2RDB

As an example, we prove one of these properties.

Proposition 1. Let A and B be a sets. Then AC B< ANB = A.

Proof. To prove an if and only if statement, we prove implication in both direc-
tions.

(=) Assume that A C B. We wish to show that AN B = A. To show that
two sets are equal, we show that each is contained in the other.

(C) To show that AN B C A, it suffices to show that every element of AN B
is in A. Thus we select an arbitrary element ¢ € AN B and show that it is in A.
Now by definition of intersection, ¢ € AN B means that ¢ € A and ¢ € B. Thus
c € A. Since ¢ was arbitrary, every element of AN B is contained in A. Thus
ANBCA.

(D) Let @ € A. We wish to show that a € AN B. Since A C B, then every
element of A is an element of B. Thus a € B. Soa € A and a € B. By definition
of intersection, a € AN B. Thus A € AN B.

Since ANB C Aand A C AN B, we have AN B = A.

(<) Assume that AN B = A. We wish to show that A C B. Let a € A. Tt
suffices to show that a € B. Since AN B = A, then a € AN B. Thus a € A and
a € B. In particular, a € B. O

Now let us prove the analogous statement in compressed form.
Proposition 2. Let A and B be a sets. Then AC B< AUB = B.

Proof.

(=) Assume that A C B. Clearly B C AU B, so we show that AU B C B.
Let c€ AUB. Thenc € Aor c € B. If ¢c € B we are done, so assume that
c € A. Since A C B, then ¢ € B by definition of subset. Thus AU B C B.

(<) Assume that AUB = B and let a € A. Thus a € AUB, so a € B. Thus
ACB. O
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2. NATURAL NUMBERS

Define the natural numbers.
o 0 =0

1={o};

2={o,{o}t}

3= {®7{®}7{®7{®}}}§

and so forth. We could have written this as

o (=g

o 1={0}

o 2=1{01};
e 3=1{0,1,2};

and so forth. A given natural number is the set containing all of the previous
natural numbers. Restate as follows.
We define 0 to be the empty set. If = is a set, the successor of = is denoted
zT and is defined as
T =xU{z}.
The natural numbers are the set N defined by following properties:
(1) 0eN;
(2) if n € N, then n™ € N;
(3) if SCN,0e S,andneS=nteS, then S=N.
For m,n € N, we say the m is less than or equal to n if m C n:

m<n<mdcCn.



3. INDUCTION

Note that the third property of natural numbers asserts that only successors
of 0 are in N;j that is, this property asserts that N is a minimal set of successors
of 0, and that N is the unique set satisfying (1) through (3). This property is
known as the Principal of Mathematical Induction.

Suppose that for every natural number n, we have a proposition p(n) which
is either true or false. Let

S ={ne€N|p(n)is true}.

Now if p(0) is true, and if the truth of p(n) implies the truth of p(n*), then the
set S contains 0 and it contains the successor of every element in it. Thus, in
this case, S = N, which means that p(n) is true for all n € N. We state this as
Theorem 1. Induction Theorem
Let p(n) be a proposition for each n € N. If

(1) p(0) is true;

(2) If p(n) is true, then p(n™) is true;
then p(n) is true for all n € N.

Example 1. Show that Y . | = w for all n € N.

Example 2. Show that 7| (11™ —4") for all n € N.

Proof. For n =1, we have 7 = 11 — 4, so clearly 7 | 11* — 4!, Thus assume that
7] 11771 — 4n=1 ] 50 there exists x € Z such that 7z = (11771 — 4"~1). Now

11" —4" = 11" — 114" L 411 - 4n7t — 4 .47t
= (11" — 4" D11 4 (11 — 4)4" !
=T7r-11+4+7-4"1
=7(11x 4+ 4" 1.
Thus 7| (117 — 4™). O

Now the induction theorem can be made stronger by weakening the hypoth-
esis. The resulting theorem gives a proof technique which is known as strong
induction.

Theorem 2. Strong Induction Theorem
Let p(n) be a proposition for each n € N. If

(1) p(0) is true;

(2) If p(m) is true for all m <n, then p(n+ 1) is true;
then p(n) is true for all n € N.

Proof. Let t(n) be the statement that “p(m) is true for all m <n”.

Our first assumption is that p(0) is true, and since the only natural number
less than or equal to 0 is zero (because the only subset of the empty set is itself),
this means that ¢(0) is true.

Our second assumption is that if ¢(n) is true, then p(n + 1) is true. Thus
assume that t(n) is true so that p(n 4 1) is also true. Then p(4) is true for all
i <n+1. Thus t(n+ 1) is true.

By our original Induction Theorem, we conclude that ¢(n) is true for all n € N.
This implies that p(n) is true for all n € N. O



4. RECURSION

We now state the Recursion Theorem, which will allows us to define addition
and multiplication of natural numbers.

Theorem 3. Recursion Theorem
Let X be a set, f: X — X, and a € X. Then there exists a unique function
¢ : N — X such that $(0) = a and ¢(nt) = f(¢(n)) for alln € N.

Reason. May be proved by induction. O

Let f : N — N be given by f(n) = n™. Let 0, : N — N be the unique
function, whose existence is guaranteed by the Recursion Theorem, defined by
om(0) =m and o, (n") = f(om(n)) = (om(n))*. Then o,,(n) is defined to be
the sum of m and n:

m+n = on,(n).

Let f: N — N be given by f = 0,,. Let p,, : N — N be the unique function,
whose existence is guaranteed by the Recursion Theorem, defined by ,,(0) = 0
and i, (nT) = f(um(n)) = om(m(n)) = m+ pm(n). Then p,y,(n) is defined to
be the product of m and n:

mn = pm(n).
The following properties of natural numbers can be proved using the above
definitions:
e m +n =n+m (commutativity of addition);
(m+n)+o0=m+ (n+ o) (associativity of addition);
mn = nm (commutativity of multiplication);
(mn)o = m(no) (associativity of multiplication);
m(n + o) = mn + mo (distributivity of multiplication over addition);
m+0=m (0 is an additive identity);
1m = m (1 is a multiplicative identity);
0m = 0.

We state two additional properties, which we will use to show that multipli-

cation of integers is well-defined.

Proposition 3. Cancellation Law of Addition
Let a,b,c € N and suppose that a +c=0b+c. Then a = 0.

Proposition 4. Cancellation Law of Multiplication
Let a,b,c € N and suppose that ac = bc. Then a = b.



5. INTEGERS

Develop the integers from the natural numbers as follows.
Let A =N x N. We wish to think of the elements (a,b) of A as differences
a—b.
Define a relation ~ on A by
(a,b) ~ (c,d) & a+d=b+c
Prove that this is an equivalence relation. Let [a, b] denote the equivalence class
of (a,b).
Set Z = {[a,b] | a,b € N}.
Define addition and multiplication on Z as follows:
* [a,b] +[c,d] = [a+c,b+d];
e [a,b] - [c,d] = [ac+ bd,ad + bc].
Prove that these binary operations are well-defined and satisfy the desired prop-
erties of the integers. The additive identity is [0,0] and the additive inverse of
[a,b] is [b,a]. The multiplicative identity is [1,0].
Define a relation < on Z by
[a,b] < [e,d] < a+d<b+c.

Prove that this is a linear order relation on Z, and that it relates to addition and
multiplication in the desired way.



6. RATIONALS

Develop the rationals from the integers as follows.
Let A =7Z xZ~{0}. We wish to think of the elements (a,b) of A as fractions

e

Define a relation ~ on A by
(a,b) ~ (c,d) < ad = be.

Prove that this is an equivalence relation. Let [a, b] denote the equivalence class
of (a,b).
Set Q = {[a,b] | a,b € Z with b # 0}.
Define addition and multiplication on Q as follows:
e [a,b] + [¢,d] = [ad + be, bd];
e [a,b] - [c,d] = [ac, bd].
Prove that these binary operations are well-defined and satisfy the desired prop-
erties of the integers. The additive identity is [0,1] and the additive inverse of
[a,b] is [—a,b]. The multiplicative identity/is [1, 1] and the multiplicative inverse
of [a,b] is [b,a]. Denote [0,1] by 0 and [1,1] by 1. For 2 = [a, b], denote [—a, b
by —z and [b,a] by 271
Define a relation < on Q by
[a,b] < [e,d] & (ad — be)bd < 0.
Prove that this is a linear order relation on Q, and that it relates to addition

and multiplication in the desired way.
The set Q satisfies the following properties:

(F1) (x+y)+z=2+ (y+2);

(F2) 240 =z;

(F3) 2+ (—2) =0;

(F4) zy = ya;

(F5) (zy)z = z(yz);
(F6) z-1=u;

(F7) -2t =1;

(F8) zy = yuz;

(F9) x(y + 2) = 2y + xz;
(01) z < ux;

(02) z <y and y < z implies z = y;

(03) z <y and y < z implies = < z;

(04) z<yory<uz.
Properties (F1) through (F2) say that Q is a field, and properties (O1) through
(04) say that Q is a linearly ordered set.
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